
!

STATIC ANALYSIS WITH
SOOT AND PHASAR

Eric Bodden and Philipp Schubert

SOAP 2020 | 15.06.2020



AGENDA

1. A few words about us

2. Soot and Phasar

a) General functionality

b) Some internals

c) How to use the frameworks

d) Future development

3. Contributing

© Heinz Nixdorf Institut / Fraunhofer IEM2



Secure Software Engineering Group

Eric Bodden Philipp Schubert

Professor for Software Engineering
at Heinz Nixdorf Institute

Director for Software Engineering and
IT-Security at Frauhofer IEM

eric.bodden@upb.de

@profbodden

Ph.D. student, Software Engineering at 
Heinz Nixdorf Institute and Fraunhofer IEM

philipp.schubert@upb.de

© Heinz Nixdorf Institut / Fraunhofer IEM3



© Heinz Nixdorf Institut / Fraunhofer IEM4



Soot and Phasar

© Heinz Nixdorf Institut / Fraunhofer IEM5

A brief history

• Established around 1999,

by Sable Research group @ McGill

• Tutorial at PLDI 2003

• Support for Java, Android (since 2011)

• Large user base, >1.300 citations

118 👀, 1.400 ⭐️ on Github

• Several commercial deployments

• LGPL-2.1 licence
https://www.sodafactory.com.au/events/jukebox-thursday-aug1/

https://www.sodafactory.com.au/events/jukebox-thursday-aug1/


Soot and Phasar

© Heinz Nixdorf Institut / Fraunhofer IEM6

A brief history

• Established around 1999,

by Sable Research group @ McGill

• Tutorial at PLDI 2003

• Support for Java, Android (since 2011)

• Large user base, >1.300 citations

118 👀, 1.400 ⭐️ on Github

• Several commercial deployments

• LGPL-2.1 licence



Soot and Phasar

© Heinz Nixdorf Institut / Fraunhofer IEM7

A brief history

• Established around 1999,

by Sable Research group

• Tutorial at PLDI 2003

• Support for Java, Android (since 2011)

• Large user base, >1.300 citations

118 👀, 1.400 ⭐️ on Github

• Several commercial deployments

• LGPL-2.1 licence

• Established around 2016, by us

• Tutorial at PLDI 2018

• Support for LLVM IR (particularly C/C++)

• Growing user base

26 👀, 391 ⭐️ on Github

• Some commercial engagement

• MIT license



Soot and Phasar

© Heinz Nixdorf Institut / Fraunhofer IEM8

How to access

• https://www.soot-oss.org/ (GitHub)

• Usage documentation in wiki

• Easily obtained or built via Maven

• Supports Java bytecode up to version 14,

some support for source code

• Code analysis and transformation

• https://phasar.org

• https://github.com/secure-software-

engineering/phasar

• Usage documentation in wiki

• Built via CMake

• Supports C-like languages including C/C++

• Code analysis and transformation

https://www.soot-oss.org/
https://phasar.org
https://github.com/secure-software-engineering/phasar


Soot and Phasar

© Heinz Nixdorf Institut / Fraunhofer IEM9

Introductory papers

Vallée-Rai et al.: Soot - a Java bytecode 

optimization framework. CASCON’99

Patrick Lam et al. The Soot framework for Java 

program analysis: a retrospective. CETUS 2011

Vallée-Rai and Laurie Hendren: Jimple: 

Simplifying Java Bytecode for Analyses and

Transformations. Sable TR 1998-4

Schubert et al.: Static Analysis for C++ with 
Phasar. PLDI'18 tutorial

Schubert et al.: PhASAR: An Inter-procedural 
Static Analysis Framework for C/C++.
TACAS'19

Schubert et al.: Know Your Analysis: How 
Instrumentation Aids Understanding Static 
Analysis. SOAP'19



Soot and Phasar

© Heinz Nixdorf Institut / Fraunhofer IEM10

Core functionalities

Intermediate 3-address-code representation

Jimple, high level LLVM IR, low level, SSA; other IRs possible

Call-graph analysis

Spark: CHA, RTA, VTA, Andersen, ..., FlowDroid CHA, RTA, DTA, Andersen, Steensgaard

Points-to analysis

Andersen-style, Refinement-based (PLDI‘06)

Boomerang (ECOOP‘16)

LLVM points-to infrastructure (including Andersen 

and Steensgaard-style analyses)

Inter-procedural data-flow solvers

IFDS/IDE (through Heros), FlowDroid, IDEal, 

Synchr. Pushdown Systems (SPDS)

IFDS/IDE, Call-strings, WPDS (via WALi-

OpenNWA)



Latest Solver: Synchronized Pushdown System (SPDS)

© Heinz Nixdorf Institut / Fraunhofer IEM11

Demand-driven flow-, field- and context-sensitive 

Johannes Späth: Synchronized Pushdown Systems for Pointer and Data-Flow Analysis, PhD thesis, Universität Paderborn, 2019.

Johannes Späth, Karim Ali, Eric Bodden: Context-, Flow-, and Field-sensitive Data-flow Analysis Using Synchronized Pushdown 
Systems, In Proceedings of the ACM SIGPLAN Symposium on Principles of Programming Languages, pages 48:1–48:29, 3(POPL), 2019.

no k-limiting!

∞-context-sensitive

∞-field-sensitive

... both for pointer and
client analysis!



Latest Solver: Synchronized Pushdown System (SPDS)

© Heinz Nixdorf Institut / Fraunhofer IEM12

Demand-driven flow-, field- and context-sensitive 

Johannes Späth: Synchronized Pushdown Systems for Pointer and Data-Flow Analysis, PhD thesis, Universität Paderborn, 2019.

Johannes Späth, Karim Ali, Eric Bodden: Context-, Flow-, and Field-sensitive Data-flow Analysis Using Synchronized Pushdown 
Systems, In Proceedings of the ACM SIGPLAN Symposium on Principles of Programming Languages, pages 48:1–48:29, 3(POPL), 2019.

no k-limiting!

∞-context-sensitive

∞-field-sensitive

... both for pointer and
client analysis!



Soot and Phasar

© Heinz Nixdorf Institut / Fraunhofer IEM13

Interaction and usages

• Provides core functionalities

• Generic data-flow solvers as extensions

• Java dependency

• Can be included using Maven, Gradle, 

SBT, etc.

• Command-line tool

• Get help through mailing list and issue

tracker

• Monorepo organized using CMake

• Usages

• (Sub)libraries

• Plugins

• phasar-llvm command-line tool

• Find help on Slack phasar.slack.com

https://phasar.slack.com/


Soot and Phasar

© Heinz Nixdorf Institut / Fraunhofer IEM14

Future development

FutureSoot DFG project

• Completely new architecture (no singletons)

• Support for multiple “scenes”, comparative and 

incremental code analysis

• More modularity, less legacy, better testability

• IR akin to Jimple but optimized for fast access

• First release hopefully still this year

• Upcoming: workshop with interested stakeholders



Soot and Phasar

© Heinz Nixdorf Institut / Fraunhofer IEM15

Future development

Old dogs new tricks: improve on SPDS

• Add support for strong updates

• Fine tune algorithmic and technical details

• Overcome C/C++ specific difficulties

• Evaluation on large production softwarehttps://images.app.goo.gl/ShtuzjJSDG6aeeJr9

Technical improvements

• Completely revised analysis model

• Improved usability

• Performance improvements

https://images.app.goo.gl/ShtuzjJSDG6aeeJr9


Using Soot and PhASAR

Contributions and Collaborations

© Heinz Nixdorf Institut / Fraunhofer IEM17

• Static Analysis is hard

• Maintaining tools is fun but a lot of work

• We welcome any contribution

• Report bugs

• Fix bugs

• Contribute features

• Become a committer!



Questions?

© Heinz Nixdorf Institut / Fraunhofer IEM18


