
Block 4

Philipp Schubert

philipp.schubert@upb.de

Static Analysis for C++ with Phasar

Ben Hermann

ben.hermann@upb.de

Eric Bodden

eric.bodden@upb.de

2

1. Measure an analysis

2. Lessons learned

3. Questions

In this Block

Measure your analysis

3

 Which portions of the runtime is spent where?

 Use PAMM (PerformAnce Measurement Mechanism) by specifying –DPHASAR_ENABLE_PAMM=ON

 System is disabled by default

 Defines functionality and a bunch of corresponding macros to measure different metrics

 Timer, counter, histograms

 Data is exported as json

 Visualized using python and pandas

 Allows for framework and analysis optimizations

 Aids analysis understanding

4

5

T
im

e
 (

se
c)

6

7

8

9

10

Analysis on real-world code

12

 Input language matters!

 C or C++, something else?

 LLVM provides all facilities to capture arbitrary source languages

 C, C++, Objective C, Rust, Swift, …

 It is all LLVM IR but …

 language characteristics and complexity propagate into IR

 E.g. indirect call-site: %5 = call i32 %4(%struct.S* dereferenceable(4) %2, i32 5)

 In C: it’s a function pointer, worst case signature matching

 In C++: oh, right?

 Is it a function pointer or a virtual member function?

 The odyssee begins analysis time increases

 More and more corner cases must be considered

Analysis on real-world code

13

 Remember C++´s special member functions

 Boils down to IR, but must be considered

 Keep semantics of source language in mind

 Easy to start, hard to finish

 Target test code works

 Production code segfaults

 Find and handle bizarre corner cases

 Hard to debug

 Size and amount of information

 Visualization?

 We are currently integrating one

ODR violation?

M1:

static void foo() {} @foo

 @_ZL3foov

M2:

static void foo() {} same as above

M1 + M2 @_ZL3foo, @_ZL3foo.1

Analysis on real-world code

14

 What are your thoughts, results and observations?

User demands

15

 What features might be useful in the future?

 Some features integrated soon:

 Map results from IR back to source level

 Use SVF framework for more precise pointer analysis

 Offer code generator for analysis templates

“Roads? Where we're going, we don't need roads.”

https://github.com/SVF-tools/SVF

Help us to develop Phasar on Github

16

 Give it a try

 https://github.com/secure-software-engineering/phasar

 https://phasar.org/

 Analyze some programs

 Write your own useful analyses, we provide the tools

 Create issues to track bugs, request features and more

 Create pull requests

https://github.com/secure-software-engineering/phasar
https://phasar.org/

Questions

17

Questions?

Thank you for your attention

