
Block 4

Philipp Schubert

philipp.schubert@upb.de

Static Analysis for C++ with Phasar

Ben Hermann

ben.hermann@upb.de

Eric Bodden

eric.bodden@upb.de

2

1. Measure an analysis

2. Lessons learned

3. Questions

In this Block

Measure your analysis

3

 Which portions of the runtime is spent where?

 Use PAMM (PerformAnce Measurement Mechanism) by specifying –DPHASAR_ENABLE_PAMM=ON

 System is disabled by default

 Defines functionality and a bunch of corresponding macros to measure different metrics

 Timer, counter, histograms

 Data is exported as json

 Visualized using python and pandas

 Allows for framework and analysis optimizations

 Aids analysis understanding

4

5

T
im

e
 (

se
c)

6

7

8

9

10

Analysis on real-world code

12

 Input language matters!

 C or C++, something else?

 LLVM provides all facilities to capture arbitrary source languages

 C, C++, Objective C, Rust, Swift, …

 It is all LLVM IR but …

 language characteristics and complexity propagate into IR

 E.g. indirect call-site: %5 = call i32 %4(%struct.S* dereferenceable(4) %2, i32 5)

 In C: it’s a function pointer, worst case  signature matching

 In C++: oh, right?

 Is it a function pointer or a virtual member function?

 The odyssee begins  analysis time increases

 More and more corner cases must be considered

Analysis on real-world code

13

 Remember C++´s special member functions

 Boils down to IR, but must be considered

 Keep semantics of source language in mind

 Easy to start, hard to finish

 Target test code works

 Production code segfaults

 Find and handle bizarre corner cases

 Hard to debug

 Size and amount of information

 Visualization?

 We are currently integrating one

ODR violation?

M1:

static void foo() {}  @foo

 @_ZL3foov

M2:

static void foo() {}  same as above

M1 + M2  @_ZL3foo, @_ZL3foo.1

Analysis on real-world code

14

 What are your thoughts, results and observations?

User demands

15

 What features might be useful in the future?

 Some features integrated soon:

 Map results from IR back to source level

 Use SVF framework for more precise pointer analysis

 Offer code generator for analysis templates

“Roads? Where we're going, we don't need roads.”

https://github.com/SVF-tools/SVF

Help us to develop Phasar on Github

16

 Give it a try

 https://github.com/secure-software-engineering/phasar

 https://phasar.org/

 Analyze some programs

 Write your own useful analyses, we provide the tools

 Create issues to track bugs, request features and more

 Create pull requests

https://github.com/secure-software-engineering/phasar
https://phasar.org/

Questions

17

Questions?

Thank you for your attention

