
Philipp Schubert

philipp.schubert@upb.de

Static Analysis for C++ with Phasar

Ben Hermann

ben.hermann@upb.de

Eric Bodden

eric.bodden@upb.de

Who are we?

2

Philipp Schubert

• Chief Developer of

PHASAR

• Teaches C/C++ for

several years

• PhD student at

Paderborn University

Ben Hermann

• Committer for

PHASAR

• Works on Soot and

OPAL

• PostDoc at Paderborn

University

Eric Bodden

• Chief Maintainer of

Soot

• Teaches program

analysis for several

years

• Professor at Paderborn

University

3

Who are you?

The first research building "Intelligent Technical Systems" at Zukunftsmeile 1

and the Heinz Nixdorf Institute at the Fürstenallee (FLTR)

4

Our static analysis frameworks

Soot

 De-facto Standard for

Program Analysis

of Java and Android

bytecode and source code

 Used by >1500 research

groups worldwide

 Foundation for most of our

current analysis tools

FlowDroid

 De-facto Standard for taint

analysis of Android apps

 Used by >1000 research

groups worldwide

 Used in productive use as part

of one of the world‘s largest

app stores

Phasar

 New framework based on LLVM

 Shares some design ideas with

Soot

 Focus on C/C++ for now

 First release past week

Some design principles that we use

6

 Simple abstract domains:

 Do not track numeric values

 Generally do not attempt to interpret/correlate branches

 Instead use context-sensitivity and flow-sensitivity

 Make use of frameworks that support procedure summaries

 Hence typically try to encode problems in a distributive way

 See SOAP‘18 paper

Crypto Expert

AES, RSA, CBC

…

Software Developer

Private Data,

Passwords,

Data Encryption

Concrete analysis tool

Concrete analysis tool

www.cognicrypt.org

The C++ Programming Language

9

C++ is easy.

It´s like riding a bike.

Except the bike is on fire,

and you´re on fire

and everything is on fire

because everything is hot lava.

The C++ Programming Language

10

C++ is easy.

It´s like riding a bike.

Except the bike is on fire,

and you´re on fire

and everything is on fire

because everything is hot lava.

We have put out all the

fires we found for you.

Please excuse the remaining flames.

Structure of this Tutorial

11

Block 1

• Introduction of

PHASAR and

LLVM

• Using the

command-line

• Generating call

graphs, etc.

Block 2

• Writing custom

analyses

• Taint analysis

Block 3

• Data-flow analyses

with IFDS

• Data-flow analyses

with IDE

Block 4

• Analysis

performance

measurement

• Debugging

• Q&A

• Discussions

What you will need for this tutorial…

12

VirtualBox

We have prepared a Virtual Box image with a complete installation of PHASAR, all the code

examples, and an editor. You should have already downloaded that. If not, here it is:

https://drive.google.com/open?id=1F4wehrMB7NyVgsI5ebTaIDaQSstffGJ1

Docker

If you prefer your own environment, we have prepared a docker container for you. Just run:

docker run –ti bhermann/phasar:pldi18

Compile your own

If you are working with Linux or MacOS, you can compile your own version of PHASAR. Just

check out our Git repo and follow the instructions. We can give you the code examples.

https://github.com/secure-software-engineering/phasar

https://drive.google.com/open?id=1F4wehrMB7NyVgsI5ebTaIDaQSstffGJ1
https://github.com/secure-software-engineering/phasar

13

Check your installation now please.

You should be able to run the phasar executable.

Block 1

Philipp Schubert

philipp.schubert@upb.de

Static Analysis for C++ with Phasar

Ben Hermann

ben.hermann@upb.de

Eric Bodden

eric.bodden@upb.de

1. What is PHASAR? What is it not?

2. Basics of LLVM

3. PHASAR – Architecture and Features

4. Analyzing programs from the command line

In this Block

15

What is PHASAR?

 PHASAR is a static analysis framework for C/C++

 It is based on LLVM

 Its main focus is on data flow analysis

 But you can do other things with it too

 We aim to design it highly flexible to allow users to develop their own analyses

16

What PHASAR is not?

17

 PHASAR is not a substitute for LLVM, it complements LLVM

 It is not meant to work as a compiler pass

LLVM

18

 The LLVM compiler infrastructure is a modular compiler toolchain

 It began as a research project at the University of Illinois

 Now it is a very active open source project with dozens of related projects

 It is also the standard compiler for C/C++ on XCode.

LLVM

19

C

C++

?

clang IR

opt

llc native

LLVM Representation

20

; ModuleID = 'factorial.c'

target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"

target triple = "x86_64-pc-linux-gnu"

; Function Attrs: nounwind uwtable

define i32 @factorial(i32 %n) #0 {

%1 = alloca i32, align 4

%r = alloca i32, align 4

store i32 %n, i32* %1, align 4

store i32 1, i32* %r, align 4

br label %2

; <label>:2 ; preds = %5, %0

%3 = load i32* %1, align 4

%4 = icmp sgt i32 %3, 0

br i1 %4, label %5, label %11

; <label>:5 ; preds = %2

%6 = load i32* %1, align 4

%7 = load i32* %r, align 4

%8 = mul nsw i32 %7, %6

store i32 %8, i32* %r, align 4

%9 = load i32* %1, align 4

%10 = add nsw i32 %9, -1

store i32 %10, i32* %1, align 4

br label %2

int factorial (int n) {

int r = 1;

while (n > 0) {

r *= n;

n--;

}

return r;

}

LLVM Representation

21

; ModuleID = 'factorial.c'

target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"

target triple = "x86_64-pc-linux-gnu"

; Function Attrs: nounwind uwtable

define i32 @factorial(i32 %n) #0 {

%1 = alloca i32, align 4

%r = alloca i32, align 4

store i32 %n, i32* %1, align 4

store i32 1, i32* %r, align 4

br label %2

; <label>:2 ; preds = %5, %0

%3 = load i32* %1, align 4

%4 = icmp sgt i32 %3, 0

br i1 %4, label %5, label %11

; <label>:5 ; preds = %2

%6 = load i32* %1, align 4

%7 = load i32* %r, align 4

%8 = mul nsw i32 %7, %6

store i32 %8, i32* %r, align 4

%9 = load i32* %1, align 4

%10 = add nsw i32 %9, -1

store i32 %10, i32* %1, align 4

br label %2

Data Layout (dash separated)

little-endian

ELF mangling

64-bit integers

80 to 128-bit floats

native CPU integers are 8, 16, 32, and 64 -bit

Stack alignment is 128-bits

int factorial (int n) {

int r = 1;

while (n > 0) {

r *= n;

n--;

}

return r;

}

LLVM Representation

22

; ModuleID = 'factorial.c'

target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"

target triple = "x86_64-pc-linux-gnu"

; Function Attrs: nounwind uwtable

define i32 @factorial(i32 %n) #0 {

%1 = alloca i32, align 4

%r = alloca i32, align 4

store i32 %n, i32* %1, align 4

store i32 1, i32* %r, align 4

br label %2

; <label>:2 ; preds = %5, %0

%3 = load i32* %1, align 4

%4 = icmp sgt i32 %3, 0

br i1 %4, label %5, label %11

; <label>:5 ; preds = %2

%6 = load i32* %1, align 4

%7 = load i32* %r, align 4

%8 = mul nsw i32 %7, %6

store i32 %8, i32* %r, align 4

%9 = load i32* %1, align 4

%10 = add nsw i32 %9, -1

store i32 %10, i32* %1, align 4

br label %2

Target Triple (dash separated)

Architecture (e.g., x86_64, ARM, PowerPC)

Vendor (e.g., pc, apple)

Operating System (e.g., linux, macosx10.7.0)

Environment (e.g., gnu)

int factorial (int n) {

int r = 1;

while (n > 0) {

r *= n;

n--;

}

return r;

}

LLVM Representation

23

; ModuleID = 'factorial.c'

target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"

target triple = "x86_64-pc-linux-gnu"

; Function Attrs: nounwind uwtable

define i32 @factorial(i32 %n) #0 {

%1 = alloca i32, align 4

%r = alloca i32, align 4

store i32 %n, i32* %1, align 4

store i32 1, i32* %r, align 4

br label %2

; <label>:2 ; preds = %5, %0

%3 = load i32* %1, align 4

%4 = icmp sgt i32 %3, 0

br i1 %4, label %5, label %11

; <label>:5 ; preds = %2

%6 = load i32* %1, align 4

%7 = load i32* %r, align 4

%8 = mul nsw i32 %7, %6

store i32 %8, i32* %r, align 4

%9 = load i32* %1, align 4

%10 = add nsw i32 %9, -1

store i32 %10, i32* %1, align 4

br label %2

Function Definition

Return type (here: i32 —> 32-bit Integer)

Function name (@-prefixed —> global identifier)

Argument list (%-prefixed —> local identifier)

Attribute reference

int factorial (int n) {

int r = 1;

while (n > 0) {

r *= n;

n--;

}

return r;

}

Down to Machine Code

24

.text

.file "factorial.c"

.globl factorial

.align 16, 0x90

.type factorial,@function

factorial: # @factorial

.cfi_startproc

BB#0:

pushq %rbp

.Ltmp0:

.cfi_def_cfa_offset 16

.Ltmp1:

.cfi_offset %rbp, -16

movq %rsp, %rbp

.Ltmp2:

.cfi_def_cfa_register %rbp

movl %edi, -4(%rbp)

movl $1, -8(%rbp)

.LBB0_1: # =>This Inner Loop Header: Depth=1

cmpl $0, -4(%rbp)

jle .LBB0_3

BB#2: # in Loop: Header=BB0_1 Depth=1

movl -4(%rbp), %eax

imull -8(%rbp), %eax

movl %eax, -8(%rbp)

movl -4(%rbp), %eax

addl$4294967295, %eax # imm = 0xFFFFFFFF

movl %eax, -4(%rbp)

jmp .LBB0_1

LLVM Intermediate Representation (IR)

25

 RISC-like instruction set, but

 Strongly typed — every instruction has typed arguments

 Explicit control flow

 Explicit data flow (Static Single Assignment form)

Instructions in LLVM IR

26

%10 = add nsw i32 %9, -1

Target register

Instructions in LLVM IR

27

%10 = add nsw i32 %9, -1

Instruction

Instructions in LLVM IR

28

%10 = add nsw i32 %9, -1

No signed wrap

Instructions in LLVM IR

29

%10 = add nsw i32 %9, -1

Type

Instructions in LLVM IR

30

%10 = add nsw i32 %9, -1

Operand 1
here source register

Instructions in LLVM IR

31

%10 = add nsw i32 %9, -1

Operand 2
here a constant

Scopes in LLVM

32

Global Variables

Instruction

Basic Block

Function
Module

Compilation Unit

Functions in the CU

Basic Blocks

in the Function

Instructions

containing Operands

Using LLVM

33

 As PHASAR is build on top of LLVM

 It relies on its IR and its API

 Therefore, we would like to familiarize you with some LLVM tools

Compilation

34

 Compiling a C file to LLVM IR

 Taking a look at the structure of LLVM‘s C frontend

 Try this out on your environment. Inspect the resulting output and compare with the input file

clang -S -emit-llvm factorial.c -o -

Only run preprocess

and compilation steps

(outputs human

readable format)

clang -cc1 -ast-dump factorial.c

Try this in your

PHASAR environment

Folder: analysis/target/

Compilation

35

 Compiling a C file to LLVM IR

 Taking a look at the structure of LLVM‘s C frontend

 Try this out on your environment. Inspect the resulting output and compare with the input file

clang -S -emit-llvm factorial.c -o -

Produce LLVM IR

clang -cc1 -ast-dump factorial.c

Try this in your

PHASAR environment

Folder: analysis/target/

Compilation

36

 Compiling a C file to LLVM IR

 Taking a look at the structure of LLVM‘s C frontend

 Try this out on your environment. Inspect the resulting output and compare with the input file

clang -S -emit-llvm factorial.c -o -

Input file

clang -cc1 -ast-dump factorial.c

Try this in your

PHASAR environment

Folder: analysis/target/

Compilation

37

 Compiling a C file to LLVM IR

 Taking a look at the structure of LLVM‘s C frontend

 Try this out on your environment. Inspect the resulting output and compare with the input file

clang -S -emit-llvm factorial.c -o -

Output to stdout

clang -cc1 -ast-dump factorial.c

Try this in your

PHASAR environment

Folder: analysis/target/

Compilation

38

 Compiling a C file to LLVM IR

 Taking a look at the structure of LLVM‘s C frontend

 Try this out on your environment. Inspect the resulting output and compare with the input file

clang -S -emit-llvm factorial.c -o -

clang -cc1 -ast-dump factorial.c

Use only compiler

front-end

Try this in your

PHASAR environment

Folder: analysis/target/

Compilation

39

 Compiling a C file to LLVM IR

 Taking a look at the structure of LLVM‘s C frontend

 Try this out on your environment. Inspect the resulting output and compare with the input file

clang -S -emit-llvm factorial.c -o -

clang -cc1 -ast-dump factorial.c

Dump the complete

AST on the console

Try this in your

PHASAR environment

Folder: analysis/target/

PHASAR

40

 PHASAR is a LLVM-based static analysis framework written in C++.

 It allows users to specify arbitrary data-flow problems which are then solved in a fully-automated manner on

the specified LLVM IR target code.

 Computing points-to information, call-graphs, etc. is done by the framework.

 Before we look into data-flow problems in the next two block, we will look at:

 PHASAR’s architecture

 Using PHASAR from the command-line to extract some data structures

Architecture of the Framework

41

LLVM API

Control Flow

IFDS/IDE Monotone

DatabasePoints To

As described by Nielson,

Nielson, and Hankin in Principles

of Program Analysis
As described by Reps et al.

How can you use it?

42

 Library – Use PHASAR functionality in your program (when you build PHASAR as shared object libraries)

 Framework – Extend it with your own analysis

 Runtime – Write plugins for PHASAR

 Executable – Run it from the command line and directly use the output

A Quick Word on Compilation

43

 Compiling PHASAR should be as easy as 1, 2, 3…

 However, it still is a C++ project… So in your environment it might be more difficult.

 Dependencies you will need:

 LLVM/Clang 5.0 (llvm-5.0-dev clang-5.0 libclang-5.0-dev)

 SQLite 3.11.0 or newer (libsqlite3-dev)

 MySql Connector (libmysqlcppconn-dev)

 LibCurl (libcurl4-openssl-dev)

 Zlib (zlib1g-dev)

 Boost 1.63.0 or newer (for common Linux no stable package available, has to be self compiled, for

Homebrew 1.66.0 is available and it works)

 Python 3 (helpful, but not necessary)

 CMake

 On a Mac, you just need homebrew and then type brew bundle in the project directory

A Quick Word on Compilation

44

 Afterwards, it should be as easy as:

 mkdir build

 cd build

 cmake ..

 make

[1%] Building CXX object lib/Controller/CMakeFiles/phasar_controller.dir/AnalysisController.cpp.o

[2%] Linking CXX static library libphasar_controllerd.a

[2%] Built target phasar_controller

[3%] Building CXX object external/googletest/googlemock/gtest/CMakeFiles/gtest.dir/src/gtest-all.cc.o

[4%] Linking CXX static library libgtestd.a

[4%] Built target gtest

[5%] Building CXX object lib/PhasarLLVM/ControlFlow/CMakeFiles/phasar_controlflow.dir/CFG.cpp.o

[6%] Building CXX object lib/PhasarLLVM/ControlFlow/CMakeFiles/phasar_controlflow.dir/ICFG.cpp.o

[8%] Building CXX object lib/PhasarLLVM/ControlFlow/CMakeFiles/phasar_controlflow.dir/LLVMBasedBackwardCFG.cpp.o

[9%] Building CXX object lib/PhasarLLVM/ControlFlow/CMakeFiles/phasar_controlflow.dir/LLVMBasedBackwardICFG.cpp.o

[10%] Building CXX object lib/PhasarLLVM/ControlFlow/CMakeFiles/phasar_controlflow.dir/LLVMBasedBiDiICFG.cpp.o

[11%] Building CXX object lib/PhasarLLVM/ControlFlow/CMakeFiles/phasar_controlflow.dir/LLVMBasedCFG.cpp.o

[12%] Building CXX object lib/PhasarLLVM/ControlFlow/CMakeFiles/phasar_controlflow.dir/LLVMBasedICFG.cpp.o

Try for Yourself

45

 Go to the folder of the PHASAR source code.

 Type in:

 cd build

 make clean

 cmake ..

 make

/home/phasar/Programs/phasar

Using the command-line interface

46

 The easiest way to use PHASAR is using it from the command line

 However, you are then limited to the provided, pre-configured analyses

Command-Line Arguments – Basic Functionality

47

--config arg Path to the configuration file, options

can be specified as 'parameter = option'

--silent Suppress any non-result output

 Configuration files contain key value pairs for any command-line argument

 We will be using configuration files later

 If you want to pipe the output to another program the silent option leaves out any unnecessary output

Command-Line Arguments – Input Definition

48

-f [--function] arg Function under analysis (a mangled

function name)

-m [--module] arg Path to the module(s) under analysis

-p [--project] arg Path to the project under analysis

-E [--entry_points] arg Set the entry point(s) to be used

 With these options you can form the input to the analysis.

 If you want to limit your analysis to specific functions you can use the --function option.

 We expect a so-called mangled function name here. That is a function name after the LLVM process. For
example: _Z5printi

 The --module option is the most commonly used option. Here you have to provide a list of LLVM IR module

files (.ll-files)

 If you do not want to create a call-graph from the main function you can use the --entry-points option to

specificy the functions you want to start.

Command Line Arguments – Output Definition

49

-O [--output] arg (=results.json) Filename for the results

 By default PHASAR outputs any information gathered by the three basic analyses in a file named
results.json.

 You can change this by providing the --output option.

 We will later provide more information on the file’s contents.

Command Line Arguments – Controlling Upstream Analyses

50

-P [--pointer_analysis] arg Set the points-to analysis to be used

(CFLSteens, CFLAnders)

-C [--callgraph_analysis] arg Set the call-graph algorithm to be used

(CHA, RTA, DTA, VTA, OTF)

-H [--classhierachy_analysis] arg Class-hierarchy analysis

-V [--vtable_analysis] arg Virtual function table analysis

 For pointer analysis and call-graph analysis, we provide different implementations.

 Depending on the client analysis you would like to implement, you will prefer a different algorithm.

 The --classhierarchy_analysis and --vtable_analysis are boolean and accept either 'on|off',

'yes|no', '1|0’ or ‘true|false’ depending on your preference.

 The --classhierarchy_analysis option produces a class hierarchy for C++ projects.

 The --vtable_analysis option reconstructs a virtual function table during this process.

Command Line Arguments – Analysis Options

51

-W [--wpa] arg (=1) Whole-program analysis mode (1 or 0)

-M [--mem2reg] arg (=1) Promote memory to register pass (1 or 0)

-R [--printedgerec] arg (=0) Print exploded-super-graph edge recorder

(1 or 0)

 In some cases it might be sufficient not to analyze the whole program.
In these cases, you can set --wpa to 0.

 The --mem2reg option activates the mem2reg pass from LLVM, which promotes memory references to be

register references. This makes downstream analyses easier.

 The --printedgerec option can be activated to print out the exploded super graphs for debugging data-

flow analyses.

Command line arguments – Plugin Mechanism

52

--analysis_plugin arg Analysis plugin(s) (absolute path to the

shared object file(s))

--callgraph_plugin arg ICFG plugin (absolute path to the shared

object file)

 We provide two interfaces to include shared-object library plugins into the PHASAR workflow.

 For security purposes these parameters must be given as absolute paths.

 An analysis plugin is a general purpose plugin. We will write such a plugin later.

 A call graph plugin can be used for any other analysis and replaces the standard implementations from

PHASAR.

Generating Class Hierarchies

53

 A class hierarchy is a data structure for object-oriented programs.

 Thus, for PHASAR you will need a program in C++.

 Nodes in this graph are classes.

 Edges are supertype-subtype relations between these classes

 You can generate such a class hierarchy by simply calling:

 The class hierarchy is written to the output file. The default file is results.json.

 You can alter the target file by using the --output option.

 It will be overwritten every time.

Try it out in:

analyses/target/

phasar –m *.cpp.ll

The results.json file

54

 The output of these previous three analyses are stored in the results file.

 Data is presented in the JavaScript Object Notation (JSON) format.

 It is a general format to interchange data between systems.

 It supports objects, arrays, and attribute-value pairs.

[

{

"TypeHierarchy": …

},

{

"CallGraph": …

},

{

"PointsToGraph": …

}

]

Type Hierachy Results

55

 In the TypeHierarchy object all struct and class types are listed.

 In the array on the right side of the attribute-value pair are the subtypes of the types on the left side.

 Here, the struct T is a subtype of struct S.

"TypeHierarchy": {

"struct.S": [

"struct.T"

],

"struct.T": null

}

Generating Call Graphs

56

 A call graph is one of the most fundamental data structures for static analysis.

 In this graph methods/functions are nodes

 And calls are the edges between these nodes

 It records every call from one function to other functions.

 PHASAR creates a call graph for a module if you start it with:

 The call graph is printed to the standard output.

 It is also stored in results.json.

phasar –m *.cpp.ll –C CHA

Try it out in:

analyses/target/

Our supported algorithms are:

• CHA (Class Hierachy Analysis)

• RTA (Rapid Type Analysis)

• DTA (Declared Type Analysis)

• VTA (Variable Type Analysis)

• OTF (On-the-fly)

• … or your call graph plugin

Call Graph Results

57

 In the CallGraph object, all methods/functions in the analysis scope are listed.

 On the right side in the array, all methods are listed, that are called from the method on the left side

"CallGraph": {

"_Z5printi": null,

"_Z5taintv": null,

"main": [

"_Z5taintv",

"_Z5printi"

]

}

Generating Points-to Sets

58

 A points-to set contains all objects and a list of the objects that point to the same memory location.

 This set is used to determine aliasing objects for other analyses.

 It can help to provide a more accurate, precise result.

 PHASAR produces points-to sets with the following call:

 The results of the points-to analysis are printed to the console

 The are also stored in the output file

Try it out

Folder: pldi18_tutorial/analyses

/target/simple_taint_analysis

phasar -m *.cpp.ll -P CFLAnders Our supported algorithms are:

• CFLSteens

• CFLAnders

Points-To Results

59

 In the Points-To object, all allocation sites are listed.

 On the right side in the array, all instructions are listed, that alias with the object on the left side

"PointsToGraph": {

" %10 = getelementptr inbounds %struct.T, %struct.T* %6, i32 0, i32 0,

!phasar.instruction.id !13, ID: 15": [

" %6 = alloca %struct.T, align 4, !phasar.instruction.id !5, ID: 7",

" %8 = getelementptr inbounds %struct.T, %struct.T* %6, i32 0, i32 0,

!phasar.instruction.id !10, ID: 12",

" %9 = getelementptr inbounds %struct.S, %struct.S* %8, i32 0, i32 0,

!phasar.instruction.id !11, ID: 13",

" %11 = getelementptr inbounds %struct.S, %struct.S* %10, i32 0, i32 1,

!phasar.instruction.id !14, ID: 16"

], ...

Do you have any questions so far?

Thank you for your attention

